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Abstract—This report presents the multiple design steps for
a specific design of the RSA algorithm using a Co-Design im-
plementation of the Pynq Z-2 FPGA in Verilog and C code
combined with the ARM assembly. The report will elaborate on
design choices and provide further analyses and metrics on the
implementation. Finally, a method for testing the implementation
and benchmarking is proposed.

I. DESIGN & MOTIVATION

The desired implementation of the RSA algorithm is fast
and flexible. A fast algorithm is desirable to maximize the
hardware implementation. Furthermore, a flexible algorithm can
adapt to the various needs of the user and is considered more
resilient to errors. For instance, the adder is equipped with
registers to save user inputs throughout the entire addition, even
if the user changes the inputs of the adder after the start of
operation. Flexibility also translates into resilient code that can
easily be replaced and maintained. To guarantee this, robust
software practices are utilized to achieve efficient, readable, and
adjustable code.

II. ARCHITECTURE

A. Adder

The implementation of the RSA algorithm uses a 514-bit
wide 3 clock cycle adder with a sufficient Worst Negative
Slack (WNS) and fast operation. Moreover, the Verilog imple-
mentation of the adder is highly flexible, which allows quick
adjustments between 64 bits to 514 bits width adder to find the
best compromise between speed and timing constraints (see Fig.
4, please refer to the appendices IX for bigger figures). For the
full addition, a multi-precision adder is used to split the addition
into two parts, the LSB and the MSB. The critical path starts
at regB and passes through the inverter, multiplexer (MUX),
and 514-bit wide adder until it reaches regresult_D.
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Fig. 1: Adder Hardware Implementation

The largest impact on the WNS is caused by the chain 4-bit
carry adder. On another note, the net delay has to be considered

when multiple adders are generated on the board, making it as
important as the logic delay. Moreover, the concatenation of
the carry with the result adds an extra constraint to the im-
plementation. More information on this is provided in Section
IV.

B. Montgomery Multiplier

To minimize the area used by the Montgomery multiplier,
only a single adder is implemented. However, this approach
significantly complicates the signal wiring. The design evolved
through several iterations, starting with a large, slow multiplier
and gradually refining it into a more compact and faster version,
as shown in Fig. 5. The critical path in the Montgomery
implementation begins at the adder’s output, passes through
the 2-bit shifter and the 2 MUXes, and concludes at the
operand_A wire.
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Fig. 2: Montgomery Multiplier Hardware Implementation

C. RSA

The RSA is split between two parts. The hardware part
performs the Montgomery multiplications while the software
part copes with the interfacing. In addition, the software handles
the data and runs the power ladder algorithm. Since the Direct
Access Memory (DMA) will output the value in memory for
only one clock cycle, four large registers store the various inputs
needed for the Montgomery multiplication.
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Fig. 3: RSA Hardware Implementation

To reduce this amount of MUXes and the complexity of the
hardware, N , R2 N , and A are transferred to a register and
X tilde is maintained in a register without leaving the FPGA.
By keeping X tilde in hardware, errors are less prone to occur
and the complexity of the hardware is decreased.
One drawback of this implementation is the added overhead
with A. When running the power ladder algorithm, the transmis-
sion and reception of the 1024-bit A values add a measurable
overhead as can be observed in Fig. 7. This value could
have remained in memory but would have, on the other hand,
caused a higher complexity and more LUTs usage due to added
MUXes.

III. AREA & NUMBER OF CYCLES

A. Adder

0 100 200 300 400 500
Width of the Adder

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Cy
cle

s

Speed of the Adder
# of Cycles
Worst Negative Slack

0 100 200 300 400 500
Width of the Adder

0

500

1000

1500

2000

2500

3000

3500

Am
ou

nt

Utilization of the Adder

# of Sliced LUTS
# of Sliced Registers

0.0

0.5

1.0

1.5

2.0

2.5

W
or

st
 N

eg
at

iv
e 

Sl
ac

k 
[n

s]

Fig. 4: Performance of the Adder

As anticipated, the speed decreases as the adder width
increases, while the use of LUTs goes up. On the Pynq Z-2, the
LUTs usage is critical, since each logic slice is composed of 4
6-input LUTs and 8 flip-flops [1]. Reducing LUT usage was,
therefore, one of the main targets of this project. However, using
larger inputs and thus bigger MUXes impacted the amount of
sliced LUTs.
Relevant to note is the linear decrease of the WNS and
consequently its sudden jump. This, however, is a result of
Vivado using another implementation, since a bigger adder
width will introduce more constraints on the implementation
run and its WNS. Further details are provided in Section IV.

B. Montgomery Multiplier

Initially, a 28.230 cycles Montgomery multiplication in com-
bination with a 64-bit, 18-cycle adder was realized. This design
was characterized by a WNS of 0.601, 7261 sliced LUTs, and
8243 sliced registers. Currently, the Montgomery multiplica-
tion has a duration of 3097 cycles with a slight increase in
sliced LUTs and registers, translating into an acceleration of
approximately 911, 5% without compromising in the size and
respecting the timing constraint. In addition, the WNS leaves
some margin to overclock the FPGA resulting in even faster
operation.
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Fig. 5: Performance of the Montgomery Multiplier

C. RSA - Montgomery Exponentiation

The initial design approach involved directly implementing
the full power ladder in hardware to minimize the overhead be-
tween software and hardware. However, this approach quickly
revealed significant design complexities and challenges, such as
debugging the hardware via software. This led to a reevaluation
of the strategy. The second design choice was to use the
hardware to compute the Montgomery multiplication only. In
this manner, the hardware would handle the data transfer and
the computation.
The integration of modules proved to be a difficult design
challenge for the WNS. This effectively led to the return to
the fourth iteration of the Montgomery multiplier.
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Fig. 6: Performance of the RSA - Montgomery Exponentiation

After successfully implementing the algorithm using one
Montgomery multiplier, a design with two parallel multipliers
was created. This design reached an increase in speed of 88.7%
with only an increase of LUT usage of 69.4% and register usage
by 52.1%. Using two Montgomery multipliers simplified certain
multiplexers, which explains why the observed increase in area
was not as equal to the increase in speed.
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IV. IMPLEMENTATION AND STRATEGIES FOR THE FPGA

Transitioning from one to two Montgomery multipliers re-
quired more than simply initializing another module in Verilog.
Although the most efficient Montgomery multiplier implemen-
tation used less than 10% of the FPGA’s resources, strict
timing and physical constraints posed significant challenges.
Synthesizing the same two Montgomery multipliers proved
infeasible because Vivado required the carry adder and asso-
ciated components to be placed so closely that locality became
insufficient for two multipliers. A previous version of the
multiplier, offering better WNS performance but consuming
more space, was selected instead.
As mentioned earlier, locality and timing emerged as
the primary constraints, and the default synthesis and
implementation strategies proved inadequate. Drawing on
test results conducted by Alberto L. [2], it was iden-
tified that the most effective strategies for the design
were Flow_AlternateRoutability for synthesis and
Performance_ExplorePostRoutePhysOpt for imple-
mentation. This strategy achieved a WNS of 0.102 ns, providing
some margin for increasing the FPGA clock frequency. An
alternative approach involved registering the carry and result
of the adder to reduce FPGA constraints and allow Vivado
more flexibility in component placement. However, adding a
register to the adder would have resulted in a speed reduction of
approximately 33.33%, making it an unsuitable option. Instead,
the clock frequency of the FPGA could be slightly increased
to around 101 MHz.

V. CODESIGN

A. Boundaries

For clarity, the algorithm is divided into 3 parts: An all-
software part, an all-hardware part, and a mixed interfacing part
that connects software and hardware with the API. Values are
assigned in the C code, which can include test vectors or actual
text strings, as will be explained in subsection V-B. Then N
and R2 N are loaded into the FPGA using Algorithm 1 before
executing the actual encryption. The encryption algorithm,
detailed in Algorithm 2, is then executed, involving the transfer
of the value A to and from the DMA at each step.

B. Interfaces

First, the correct addresses are set on the DMA before
sending a command, as outlined in Table I.
During the power ladder phase (Table II), the software
and hardware interface continuously, with the results of the
Montgomery multiplication being loaded and received at each
step. A notable feature of the implementation is the added
interface layer. The design extends beyond a proof of concept
that works with test vectors and is fully functional and capable
of encrypting and decrypting user-defined messages. A set of
functions was developed that allows users to input any string
of text, with the program encrypting each block of text. This
approach enhances the flexibility of the implementation and
brings it closer to real-world applications, enabling interaction
with users in everyday situations.

1) Command & Data transfer:

loading command RXADDR TXADDR
0b1001 N ///
0b1011 R2 N ///

TABLE I: Status of the Registers for the loading Phase

Command RXADDR TXADDR
0b001 M ///
0b0011 A A
0b0101 A A
0b0111 A A

TABLE II: Status of the Registers for the Power Ladder

Algorithm 1 Loading Variables

1: procedure LOAD DATA(N,R2 N)
2: RX ADDR← address of N
3: loading command← 8 + 1
4: while busy
5: loading command← 0
6:
7: RX ADDR← address of R2 N
8: loading command← 8 + 3
9: while busy

10: loading command← 0

Algorithm 2 Power Ladder

1: procedure POWER LADDER(A,R N,M,X tilde)
2: RX ADDR← address of M
3: command← 1
4: while busy
5: command← 0
6:
7: for (i = 0; i < 32; i++) do
8: A[i] = R N[i]
9:

10: for (i = 0; i < exponent length; i++) do
11: RX ADDR← address of A
12: TX ADDR← address of A
13: if bit(exponent, exponent length− i− 1) then
14: command← 3
15: while busy
16: command← 0
17: else
18: command← 5
19: while busy
20: command← 0
21:
22: RX ADDR← address of A
23: TX ADDR← address of A
24: command← 7
25: while busy
26: command← 0
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2) Interface Overhead: It takes around 50 CPU clock cycles
to receive data from the FPGA through the DMA after the hard-
ware finishes computing the result. And for sending data around
556 CPU clock cycles are required to finish the operation. It
has to be noted that the FPGA runs at 100 MHz and the ARM
CPU at 650 MHz at base clock [1]. That translates into 556
clock cycles in the CPU being equivalent to around 86 clock
cycles for the FPGA.
Completing a whole operation of sending, computing the Mont-
gomery multiplication result, and receiving its result requires
on average 86 + 3097 + 8 = 3191 FPGA clock cycles or
20741 CPU clock cycles. This result correlates with the result
for encrypting a message using a 16-bit key. We need around
20741 ·(1+16+1) ≈ 373 ·103 and we measured ∼ 381 ·103 on
the board. This difference of 7·103 cycles can be explained due
to extra work from the CPU due to the loops or the assignments
of the variables.

VI. TEST STRATEGY

The majority of components were broken down into smaller
modules to test them individually and ensure proper opera-
tion. For the adder, over 20 tests were conducted, covering
various addition and subtraction cases, as well as edge cases
such as negative subtraction and overflow. This interconnected
and systematic approach kept the design and testing process
clear and manageable. A similar procedure was followed for
the Montgomery multiplication. Various test inputs, generated
by testvectors.py, were provided to the Montgomery
multiplier, and the algorithm was also recreated in Python to
monitor each step. The Python script assisted us in debugging
by identifying the locations of issues. Multiple tests were run
to ensure all conditions were explored, maximizing coverage
testing.
For the RSA implementation, the software part was first
designed using five different inputs generated by the com-
mand python3 testvectors.py rsa 2024.X, where
X ranges from 1 to 5. This C code was then translated into
Verilog to replicate its behavior. The four provided tasks in
tb_rsa_warmup.v were heavily utilized to run tests and
ensure close alignment with the C code. Initial debugging was
performed using the testbenches, followed by debugging in the

C code with the use of monitoring registers, rout1 to rout7. A
small library of functions was developed to compare the actual
results with the expected ones. Finally, the software hardware
implementation was tested using actual examples of messages
and exponents. To facilitate the comparison of string and array
values, several functions were implemented to print decoded
strings and compare arrays.

VII. PERFORMANCE, LIMITATION AND IMPROVEMENTS

A. The Power of the Co-Design

Fig. 8 illustrates the true power of a co-design approach for
cryptographic applications. Even when using ARM assembly
to get as close as possible to machine code, the speed of
an FPGA implementation of the Montgomery multiplication
cannot be matched. Additionally, the overhead introduced by
this co-design algorithm is minimal in comparison to the speed
gain achieved.
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B. The Chinese Remainder Theorem

A major drawback of the RSA algorithm is the high cost
of decrypting a message, which makes the receiver vulnerable
to denial-of-service (DOS) attacks. To address this, modern
RSA implementations use the Chinese Remainder Theorem
(RSA-CRT) to accelerate the decryption process [3] [4] [5].
To implement the RSA-CRT algorithm, three new inputs—dP ,
dQ, and qinv—are required.

Algorithm 3 RSA-CRT Decryption

1: function DECRYPT DATA(Ct,d,p,q) return m
2: dP ← d (mod p− 1)
3: dQ ← d (mod q − 1)
4: qinv = q−1 (mod p)
5:
6: m1 = CtdP (mod p)
7: m2 = CtdQ (mod q)
8: h = qinv(m1 −m2) (mod p)
9: m = m2 + h · q

Due to time and logistical constraints, the development and
testing of this version of the algorithm on the FPGA could
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not be completed. While it remains in the source code, further
fine-tuning is needed before it is fully operational. However,
experiments were conducted, and the algorithm was imple-
mented in Python within testvectors.py (also included
in the source code). The performance was benchmarked both
with and without the use of CRT. Improvements in decryption
speed were observed, though the added complexity and the
initial computations required for the faster RSA version must
be considered.
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VIII. CONCLUSION

In summary, a functional implementation of the RSA algo-
rithm using the power ladder and Montgomery representation
approach using a co-design strategy is realized. This work is the
result of numerous iterations and careful consideration to design
the most efficient implementation while maximizing speed and
space.
This project highlighted the importance of space and its impact
on speed, demonstrating how clever mathematics can enable
the creation of smarter, faster hardware. The goals were not
only achieved but also exceeded, driven by a constant pursuit
of incremental improvements.
While there is no ”free lunch,” strategic design decisions and
effective optimization techniques have been key to achieving
these outcomes.
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IX. APPENDICES

In the next few pages, larger illustrations of Fig. 1, 2 and 3
can be found.
The source code of this work can be found at this Github
repository under a CC BY-NC-ND 4.0 license.
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